The role of TMPRSS6/matriptase-2 in iron regulation and anemia

نویسندگان

  • Chia-Yu Wang
  • Delphine Meynard
  • Herbert Y. Lin
چکیده

Matriptase-2, encoded by the TMPRSS6 gene, is a member of the type II transmembrane serine protease family. Matriptase-2 has structural and enzymatic similarities to matriptase-1, which has been implicated in cancer progression. Matriptase-2 was later established to be essential in iron homeostasis based on the phenotypes of iron-refractory iron deficiency anemia identified in mouse models as well as in human patients with TMPRSS6 mutations. TMPRSS6 is expressed mainly in the liver and negatively regulates the production of hepcidin, the systemic iron regulatory hormone. This review focuses on the current understanding of matriptase-2 biochemistry, and its role in iron metabolism and cancer progression. In light of recent investigations, the function of matriptase-2 in hepcidin regulation, how it is being regulated, as well as the therapeutic potential of matriptase-2 are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis.

Proteolytic events at the cell surface are essential in the regulation of signal transduction pathways. During the past years, the family of type II transmembrane serine proteases (TTSPs) has acquired an increasing relevance because of their privileged localization at the cell surface, although our current understanding of the biologic function of most TTSPs is limited. Here we show that matrip...

متن کامل

Iron-deficiency anemia from matriptase-2 inactivation is dependent on the presence of functional Bmp6.

Hepcidin is the master regulator of iron homeostasis. In the liver, iron-dependent hepcidin activation is regulated through Bmp6 and its membrane receptor hemojuvelin (Hjv), whereas, in response to iron deficiency, hepcidin repression seems to be controlled by a pathway involving the serine protease matriptase-2 (encoded by Tmprss6). To determine the relationship between Bmp6 and matriptase-2 p...

متن کامل

Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis.

Maintaining the body's levels of iron within precise boundaries is essential for normal physiological function. Alterations of these levels below or above the healthy limit lead to a systemic deficiency or overload in iron. The type-two transmembrane serine protease (TTSP), matriptase-2 (also known as TMPRSS6), is attracting significant amounts of interest due to its recently described role in ...

متن کامل

Matriptase-2 mutations in iron-refractory iron deficiency anemia patients provide new insights into protease activation mechanisms.

Mutations leading to abrogation of matriptase-2 proteolytic activity in humans are associated with an iron-refractory iron deficiency anemia (IRIDA) due to elevated hepcidin levels. Here we describe two novel heterozygous mutations within the matriptase-2 (TMPRSS6) gene of monozygotic twin girls exhibiting an IRIDA phenotype. The first is the frameshift mutation (P686fs) caused by the insertion...

متن کامل

A mutation in the TMPRSS6 gene, encoding a transmembrane serine protease that suppresses hepcidin production, in familial iron deficiency anemia refractory to oral iron.

BACKGROUND Hepcidin plays a key role in body iron metabolism by preventing the release of iron from macrophages and intestinal cells. Defective hepcidin synthesis causes iron loading, while overproduction results in defective reticuloendothelial iron release and iron absorption. DESIGN AND METHODS We studied a Sardinian family in which microcytic anemia due to defective iron absorption and ut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014